Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Inorg Chem ; 63(9): 4429-4437, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38377564

RESUMO

Designing and fabricating efficient and stable nonprecious metal-based oxygen reduction reaction (ORR) electrocatalysts is a pressing and challenging task for the pursuit of sustainable new energy devices. Herein, porous P-CoSe2@NC electrocatalysts with high-density carbon-coated CoSe2 sites were successfully fabricated based on a pyridyl-porphyrinic metal-organic framework (Co-TPyP MOF) via a molten salt-assisted synthesis method. The hierarchical pore and N-doping carbon substrate of P-CoSe2@NC promotes mass transfer and electron-transfer efficiency, which is beneficial to maximize CoSe2 site utilization. Well-designed P-CoSe2@NC exhibits efficient ORR catalytic activity with a high half-wave potential of 0.863 V and excellent catalytic stability. Meanwhile, rechargeable aqueous primary/quasi-solid-state ZABs based on a P-CoSe2@NC air cathode show a high peak power density and exceptional operating stability, catering to the demands of practical applications. The qualified performance and structure stability of the electrocatalytic system may be mainly attributed to the protection of the CoSe2 nanoparticle by the coated carbon layer. Given the rational design of the structure and the component of the electrocatalyst with enhanced ORR activity, we believe that this work has provided a reliable pathway to the development of high-performance transition-metal chalcogenides for energy-storage and -conversion devices.

2.
Small ; 18(44): e2203347, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36108140

RESUMO

Although rechargeable zinc-ion batteries are promising candidates for next-generation energy storage devices, their inferior performance at subzero temperatures limits their practical application. Here, a strategy to destroy the H-bond network by adding synergistic chaotropic regents is reported, thus reducing the freezing point of the aqueous electrolyte below -90 °C. Owing to the synergistic chaotropic effect between urea and Zn(ClO4 )2 and the thermal release effect on the cathode interface during charging, Zn//VO2 batteries feature a specific capacity of 111.4 mAh g-1 and stability after ≈1000 cycles with 81.9% capacity retention at -40 °C. This work demonstrates that the synergistic chaotropic effect and the thermal effect on the interface can effectively widen the operation range of temperature of aqueous electrolytes and maintain fast kinetics, which provides a new design strategy for all-weather aqueous zinc batteries.

3.
Small ; 18(22): e2201443, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35502124

RESUMO

Some new insights into traditional metal pretreatment of anticorrosion for high stable Zn metal anodes are provided. A developed pretreatment methodology is employed to prefer the crystal plane of polycrystalline Zn and create 3.26 µm protective coatings mainly consisting of organic polymers and zinc salts on Zn foils (ROZ@Zn). In this process, Zn metal exhibits a surface-preferred (001) crystal plane proved by electron backscattered diffraction. Preferred (001) crystal planes and ROZ coatings can regulate Zn2+ diffusion, promote flat growth of Zn, and prevent side reactions. As a result, ROZ@Zn symmetrical cells exhibit superior plating/stripping performance over 1300 h. Impressively, it is significantly prolonged over 40 times in comparison to the bare Zn symmetric cell at 5 mA cm-2 . Moreover, Zn//MnO2  button cells have a high capacity retention of 96.3% after 1600 cycles and pouch cells have a high capacity 122 mAh g-1  after 200 cycle at 5 C. This work provides inspiration for high stable aqueous Zn metal batteries using the developed metal pretreatment of anticorrosion, which will be a viable, low-cost, and efficient technology. More interesting, it demonstrates the availability of reconstructing crystal planes by the largely heterogeneous reaction activation of the different crystal planes to H+ .


Assuntos
Compostos de Manganês , Óxidos , Fontes de Energia Elétrica , Eletrodos , Zinco
4.
ACS Nano ; 16(6): 9461-9471, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35588279

RESUMO

The instability of Zn anode caused by severe dendrite growth and side reactions has restricted the practical applications of aqueous zinc-ion batteries (AZIBs). Herein, an enamel-like layer of nanohydroxyapatite (Ca5(PO4)3(OH), nano-HAP) is constructed on Zn anode to enhance its stability. Benefiting from the ion exchange between Zn2+ and Ca2+, the adsorption for Zn2+ in enamel-like nano-HAP (E-nHAP) layer can effectively guide Zn deposition, ensuring homogeneous Zn2+ flux and even nucleation sites to suppress Zn dendrites. Meanwhile, the low pH of acidic electrolyte can be regulated by slightly soluble nano-HAP, restraining electrolyte corrosion and hydrogen evolution. Moreover, the E-nHAP layer features high mechanical flexibility due to its enamel-like organic-inorganic composite nanostructure. Hence, symmetric cells assembled by E-nHAP@Zn show superior stability of long-term cycling at different current densities (0.1, 0.5, 1, 5, and 10 mA cm-2). The E-nHAP@Zn∥E-nHAP@Cu cell exhibits an outstanding cycling life with high Coulombic efficiency of 99.8% over 1000 cycles. Notably, the reversibility of full cell based on CNT/MnO2 cathode can be effectively enhanced. This work shows the potential of drawing inspiration from biological nanostructure in nature to develop stable metal electrodes.


Assuntos
Compostos de Manganês , Óxidos , Troca Iônica , Adsorção , Eletrodos , Eletrólitos , Metais , Zinco , Concentração de Íons de Hidrogênio
5.
Small Methods ; 5(7): e2100418, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34928003

RESUMO

Aqueous sodium-zinc hybrid ion batteries are attracting extensive attention due to high energy density, low cost, and environmental friendliness. Unfortunately, there are still some drawbacks associated with the low voltage and cycle performance degradation that limit their practical application. Here, a concentrated aqueous electrolyte with solvation-modulated Zn2+ is reported that reduces the hydrogen evolution reaction on the surface of Zn metal, avoiding the generation of ZnO and uneven deposition. Accordingly, the Zn anode exhibits 1600 h Zn plating/stripping and ≈99.96% Coulombic efficiency after 700 cycles. In addition, solvation-modulated Na+ promotes the excellent structural stability of zinc hexacyanoferrate (ZnHCF) due to the rhombohedral-rhombohedral rather than rhombohedral-cubic phase transition. A ZnHCF//Zn full cell delivers an average voltage of 1.76 V and 98% capacity retention after 2000 cycles at 5 C rates.

6.
Small ; 16(41): e2003585, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32964658

RESUMO

The practical application of aqueous rechargeable batteries is hampered by the low energy density and poor cycle stability, which mostly arises from the corrosion of cathode current collector, exfoliation of active material, and narrow electrochemical stability window of aqueous electrolyte. A light-weight and low-cost cathode current collector composed of graphite and carbon nanotube coated on nylon membrane exhibiting corrosion resistance and strong adhesion is developed. Also, a modified aqueous electrolyte with the addition of urea whose window is expanded to ≈3.2 V is developed that contributes to the formation of solid-electrolyte interphase on surfaces of electrodes. LiMn2 O4 /NaTi2 (PO4 )3 Li+ /Na+ hybrid ion battery using such aqueous electrolyte and current collector is demonstrated to cycle up to 10 000 times with low cost (60 dollars per kWh) and high energy density (100 Wh kg-1 ) for stationary energy storage and electronic vehicles applications.

7.
Small ; 16(26): e2001228, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32510836

RESUMO

Aqueous rechargeable Zn/birnessite batteries have recently attracted extensive attention for energy storage system because of their low cost and high safety. However, the reaction mechanism of the birnessite cathode in aqueous electrolytes and the cathode structure degradation mechanics still remain elusive and controversial. In this work, it is found that solvation water molecules coordinated to Zn2+ are coinserted into birnessite lattice structure contributing to Zn2+ diffusion. However, the birnessite will suffer from hydroxylation and Mn dissolution with too much solvated water coinsertion. Through engineering Zn2+ primary solvation sheath with strong-field ligand in aqueous electrolyte, highly reversible [Zn(H2 O)2 ]2+ complex intercalation/extraction into/from birnessite cathode is obtained. Cathode-electrolyte interface suppressing the Mn dissolution also forms. The Zn metal anode also shows high reversibility without formation of "death-zinc" and detrimental dendrite. A full cell coupled with birnessite cathode and Zn metal anode delivers a discharge capacity of 270 mAh g-1 , a high energy density of 280 Wh kg-1 (based on total mass of cathode and anode active materials), and capacity retention of 90% over 5000 cycles.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...